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Human cognitive architecture is peculiar. A dominant structure, working

memory, is minute in its ability to process new material but massive in its

ability to process very extensive and complex, previously learned infor-

mation. An immeasurable quantity of that previously learned information is

held in schematic form in a long-term memory that is so closely associated

with working memory that it directs and, indeed, can misdirect the manner

in which working memory processes information. Together, these two

systems (along with a sensory memory system that is not considered in this

chapter) permit us to engage in cognitive activities that can vary from simple

and routine at one extreme to the intellectual heights that humans have

scaled at the other extreme.

The chapter is concerned primarily with why human cognitive

architecture evolved in this manner. Specifically, what are the evolutionary

advantages of a working memory that requires a large long-term memory

to become maximally eVective in processing information but has

diYculty processing new information not held in long-term memory? In

answering this question, it will be suggested that working memory is

very limited when handling new information because there is no central

executive to coordinate novel information; working memory only

becomes fully eVective when handling previously learned material held

in long-term memory because that previously learned material can act as

a central executive; and long-term memory is very large in order to
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maximize the circumstances under which a central executive function will be

available.

In order to throw light on these and other topics, the following are

considered: (1) Relations between the structure of information and cognitive

architecture leading to how and why some characteristic types of

information impelled the evolutionary development of human cognitive

architecture; (2) common information structures underlying human infor-

mation processing and evolution by natural selection; and (3) consequences

of the particular evolutionary directions that our cognitive architecture has

taken for learning in general and for modes of presenting information.
I. How Information Structures Have Impelled the Evolution of Human

Cognitive Architecture

A. Information Structures

While considerable work by many researchers over several decades has been

devoted to the organization of human cognitive architecture, far less eVort

has gone into investigating the information structures that must have driven

the evolution of that architecture. Some work has been carried out by

Sweller (1994) and Halford, Wilson, and Phillips (1998). Sweller (1994)

suggested that all information can be placed on a continuum according to

the extent to which the elements that constitute the information interact. At

one extreme, there is no interaction between the elements that need to be

learned. They are independent. Element interactivity is low or, indeed,

nonexistent, which means that each element can be considered and learned

serially without reference to any other element. Because elements at the low

element interactivity end of the continuum do not interact with each other,

there is no loss of understanding despite each element being learned

individually and in isolation. Understanding is defined as the ability to

process all elements that necessarily interact simultaneously in working

memory. Learning such material imposes a low cognitive load because each

element can be learned without reference to other elements.

At the other extreme of the continuum, there is close interaction between

the various elements that need to be learned. Element interactivity is high,

which means that if the material is to be understood, all of the information

with its multiple elements must be processed simultaneously, imposing a

heavy cognitive load. Elements that interact can be processed individually,

in serial fashion, but not with a high degree of understanding. Processing

high element interactivity material without learning necessary relations

between elements will result in rote learning. The reason rote learning occurs
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frequently is because learning individual elements without learning

important relations and interactions between elements can reduce cognitive

load dramatically. When rote learning, only one, or at most, a very limited

number of elements need to be held or processed simultaneously. In eVect,

during rote learning, high element interactivity material is treated by the

cognitive system as though it is low element interactivity material.

In contrast, learning high element interactivity material with understand-

ing imposes very heavy cognitive demands, especially if there are many

interacting elements. For understanding to occur, all interacting elements

must be processed simultaneously, and for some extensive, high element

interactivity material, processing all of the interacting element simultan-

eously may be very diYcult or even impossible (Pollock, Chandler, &

Sweller, 2002). Learning such material by rote reduces cognitive load, but at

the cost of understanding. Examples of very low and very high element

interactivity material are discussed next.

1. Low Element Interactivity Material

Laboratory-based paired associate learning tasks provide one example of

learning low element interactivity material. Each paired associate can be

learned without consciously considering any of the other paired associates

that require learning. In that sense, the elements of the task do not interact.

They can be learned in isolation without imposing a heavy cognitive load

and without any loss of understanding of the task at hand.

Many realistic tasks resemble paired associate learning. Learning the

names of any set of entities such as people’s names, the vocabulary of a

second language, or chemical symbols provide examples. Such material may

be diYcult to learn because there may be many elements that require

learning, but the diYculty is unrelated to cognitive load. The elements can

be learned in serial fashion without loss of understanding. Indeed, the

concept of understanding is not normally applied to the learning of such

material. One may have not learned or forgotten a particular foreign word,

such as the translation of the word ‘‘cat,’’ but one does not fail to

‘‘understand’’ the word. The distinction between rote learning and learning

with understanding does not apply to such material. Failure to understand is

reserved exclusively for high element interactivity material for which there is

a heavy load if it is to be learned with understanding (Marcus, Cooper, &

Sweller, 1996).

2. High Element Interactivity Material

Modern examples of high element interactivity material include learning the

syntax of a second language, deriving meaning from words or symbols,
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balancing chemical equations, or most areas of mathematics. Examples

of high element interactivity information that our ancestors had to

process at a time when the human cognitive system evolved to its present

point include learning a spatial layout, such as a route from point A to

point B, learning to find food and shelter, learning to avoid danger,

or learning complex social relations. To demonstrate the concept, the

element interactivity associated with learning some of these areas is

considered next.

While much of the vocabulary of a second language can be learned

element by independent element with little or no interactivity, syntax cannot

be learned in this manner. Elements interact and must be processed

simultaneously for understanding and learning to occur. For example, word

order is important in English, and word order cannot be learned without

considering several words simultaneously. Consider the two sentences:

‘‘Word order is important in English’’ and ‘‘English in important is order

word.’’ One cannot learn that the first is grammatical but the second is not

by considering each word in isolation. Learning the appropriate order of

words in English requires the learner to consider all of the relevant words

simultaneously. Each word and its interaction with at least some and, in

some cases, all of the other words must be considered. Element interactivity

is high and, as a consequence, cognitive load is high because at least at

some point, all of the elements and their relations must be processed

simultaneously.

Understanding and learning the structure of any mathematical process

that incorporates an equation invariably involve a high degree of element

interactivity. Assume a student is learning how to make a the subject of

the equation a=b ¼ c. In order to understand and learn the procedure, the

structure of the initial equation must be considered, the numerator on

the left side must be multiplied by b, which means the numerator on the

right side must be multiplied by b in order to retain the equality, and the b in

both the numerator and the denominator must be canceled, leaving the

solution a ¼ cb. While this procedure can be memorized step by step,

understanding only occurs when the entire procedure can be processed

simultaneously. Multiplying the left side by b without multiplying the right

side by b simultaneously reflects a lack of understanding of the procedure.

The entire procedure needs to be processed simultaneously if it is to be

learned with understanding rather than by rote because all of the elements

that need learning interact. Rote learning will reduce cognitive load

substantially, but at the cost of understanding. Learning with understanding

imposes a heavy cognitive load because the elements that require learning

interact and so must be processed simultaneously if appropriate meaning is

to be derived.
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3. An Alternative Conceptualization of Element Interactivity

Halford, Wilson, and Phillips (1998) have provided a formal model of what

they term ‘‘relational complexity’’ that provides an alternative to the

concept of element interactivity. The model was intended primarily to

provide a metric measuring individual diVerences, including developmental

diVerences, in working memory. Nevertheless, it can equally provide a

measure of the working memory load imposed by various tasks, especially

problems that require solution. The model assumes that any task or problem

can be characterized by the number of dimensions that need to be related. A

unary dimension relates constants: The cat walked, provides an example. A

binary dimension relates two variables, ternary dimension three variables,

quaternary four variables, etc. The proportion a=b ¼ c=d is an example of a

quaternary relation with its four variables. The number of dimensions that

must be related provides the relational complexity of a task or problem, and

the number of dimensions that a person can process in working memory

provides a measure of working memory capacity.

Relational complexity and element interactivity may well be diVerent

terms for the same concept. Because element interactivity was devised

specifically to measure diVerences in working memory load imposed by

diVerent tasks has been applied experimentally to a very wide variety of

tasks (e.g., see Marcus et al., 1996; Sweller & Chandler, 1994; Tindall-Ford,

Chandler, & Sweller, 1997) and, as shown later, has been closely related to

schema-based knowledge held in long-term memory, it is used in this

chapter. Nevertheless, the similarity and perhaps identity of element

interactivity and relational complexity need to be kept in mind.

How has human cognitive architecture evolved to handle these infor-

mation structures? In particular, how do we handle intellectually diYcult,

high element interactivity material? Finding one’s way around new

locations, understanding relations between the environment and food

sources or the environment and danger, and establishing social relations and

interactions with friends and enemies have been part of human life for a very

long time and, along with a myriad of other activities, can all involve high

element interactivity information. The nature of the mechanisms required to

deal with these situations is discussed next.

B. Human Cognitive Architecture

Much more work has been carried out on human cognitive architecture than

on information structures. The term ‘‘cognitive architecture’’ refers to the

manner in which cognitive structures are organized. Cognitive structures

and their relations were either discovered or emphasized as individual

structures by various researchers since the early 1930s and have been
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conceptualized into a unified architecture since the early 1970s. While there

are many active research areas and controversies associated with that

architecture, there is also a substantial degree of consensus concerning its

basic outline. This section describes those aspects of human cognitive

architecture around which there is broad agreement, including a brief

history of our developing understanding of the topic.

1. Working Memory

Initially designated short-term memory (e.g., Miller, 1956), it is now more

commonly referred to as working memory (e.g., Baddeley & Hitch, 1974) to

reflect the change in emphasis from a holding store to the processing engine

of the cognitive system. Working memory is the seat of consciousness and,

indeed, can be equated with consciousness in that the characteristics of our

conscious lives are the characteristics of working memory. The most

commonly expressed attributes of working memory are its extremely limited

capacity, discussed by Miller (1956), and its extremely limited duration,

discussed by Peterson and Peterson (1959). In fact, both of these limitations

apply only to novel information that needs to be processed in a novel way.

Well-learned material, held in long-term memory suVers from neither of

these limitations when brought into working memory (Ericsson & Kintsch,

1995).

While initially conceptualized as a unitary concept, working memory is

now more commonly assumed to consist of multiple streams, channels, or

processors. For example, Baddeley (e.g., Baddeley, 1992; Baddeley & Hitch,

1974) divided working memory into a visuospatial sketch pad for dealing

with two-dimensional diagrams or three-dimensional information, a

phonological loop for dealing with verbal information, and a central

executive as a coordinating processor.

A major consequence of the limitations of working memory is that when

faced with new, high element interactivity material, we cannot process it

adequately. We invariably fail to understand new material if it is suYciently

complex. In order to understand such material, other structures and other

mechanisms must be used. Processing high element interactivity material

requires the use of long-term memory and learning mechanisms.

2. Long-Term Memory

Because we are not conscious of the contents of long-term memory except

when they are brought into working memory, the importance of this store

and the extent to which it dominates our cognitive activity tend to be hidden

from us. Given this hidden nature of long-term memory, it is not surprising

that modern research into long-term memory postdated research into
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working memory. It took some time for researchers to realize that long-term

memory is not just used to recognize or recall information but rather is an

integral component of all cognitive activity, including activities such as high-

level problem solving. When solving a problem, it was previously assumed

that knowledge stored in long-term memory was of peripheral rather than

central importance. De Groot’s (1965) work on chess (first published in

1946) demonstrated the critical importance of long-term memory to higher

cognitive functioning. He demonstrated that memory of board configur-

ations taken from real games was critical to the performance of chess

masters. The significance of this finding became fully apparent with Chase

and Simon’s (1973) paper on the same topic.

3. Schemas

Knowledge is stored in long-term memory in schematic form, and schema

theory describes a major learning mechanism. Schemas allow elements of

information to be categorized according to the manner in which they will be

used. Thus, for example, we have a schema for the letter a that allows us to

treat each of the infinite number of printed and hand-written variants of the

letter in an identical fashion. Schemas first became important cognitive

constructs following the work of Piaget (1928) and Bartlett (1932). They

became central to modern cognitive theory, especially theories of problem

solving, in the 1980s. As well as the work of de Groot (1965) and Chase and

Simon (1973), Gick and Holyoak (1980, 1983) demonstrated the importance

of schemas during general problem solving, and Larkin, McDermott,

Simon, and Simon (1980) and Chi, Glaser, and Rees (1982) demonstrated

the critical role of schemas in expert problem solving. As a consequence of

this work, most researchers now accept that problem-solving expertise in

complex areas demands the acquisition of tens of thousands of domain-

specific schemas. These schemas allow expert problem solvers to recognize

problem states according to the appropriate moves associated with them.

Schema theory assumes that skill in any area is dependent on the acquisition

of specific schemas stored in long-term memory.

Schemas, stored in long-term memory, permit the processing of high

element interactivity material in working memory by permitting working

memory to treat the many interacting elements as a single element. In eVect,

the interacting elements are buried within the schema that, as discussed in

more detail later, can act as a central executive by appropriately coordin-

ating those interacting elements. As an example, anyone reading this chapter

has schemas for the complex squiggles that represent a word. Those

schemas, stored in long-term memory, allow us to reproduce and

manipulate the squiggles that constitute writing, in working memory,
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without strain. However, we are only able to do so after several years of

learning.

4. Automation

Everything that is learned can, with practice, become automated. After

practice, specific categories of information can be processed with decreasing

conscious eVort. In other words, processing can occur with

decreasing working memory load. As an example, schemas that permit us

to read letters and words must initially be processed consciously in working

memory. With practice they can be processed with decreasing conscious

eVort until eventually, reading individual letters and words becomes an

unconscious activity that does not require working memory capacity.

Schneider and Shi Vrin (1977) and Shi Vrin and Schneider (1977) demon-

strated the contrast between conscious and automated processing. In his

versions of the ACT architecture, Anderson places a heavy emphasis on

automation (e.g., Anderson & Lebiere, 1998). Kotovsky, Hayes, and Simon

(1985) demonstrated the enormous benefits of automated processing to

problem-solving skill. A problem isomorph that could be solved using

automated rules was solved 16 times more rapidly than an isomorph that

required the rules to be processed consciously. Thus, high element

interactivity material that has been incorporated into an automated schema

after extensive learning episodes can be manipulated easily in working

memory to solve problems and engage in other complex activities.

5. Coalescing of Isolated Cognitive Structures and Functions into a Unified

Cognitive Architecture

While these cognitive structures and functions are studied frequently in

isolation, they can be combined into a unified cognitive architecture.

Atkinson and ShiVrin (1968) elucidated relations between working or short-

term memory and long-term memory. In depicting the flow of information

between memory stores, they presented a cognitive architecture that is at the

core of most subsequent treatments. The cognitive architecture described

here incorporates the Atkinson and ShiVrin (1968) model along with the two

learning mechanisms, schema acquisition and automation.

All conscious processing of information consists of the manipulation

of schemas, which can act as interacting elements, in working memory.

That manipulation can result in learning, which consists of the creation

of new, higher order schemas and automation. Schemas are stored in long-

term memory. They can only be brought into working memory if they

are held in long-term memory. The primary, possibly sole, function of long-

term memory is to hold hierarchically organized schemas. The limitations of
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working memory refer to its limited ability to process separate schemas

that have not been incorporated into a higher level schema. Only a very small

number of schemas can be processed and they can only be held in working

memory for a few seconds. Some schemas can consist of a huge number of

interacting elements. These interacting elements are lower level schemas.

When brought into working memory, a schema, no matter what its size, is

treated as a single element. Thus, schemas have a dual function of organizing

information in long-term memory and reducing working memory load.

Automation has a similar function of reducing working memory load. On

this analysis, the two learning mechanisms of schema acquisition and

automation both have a primary function of reducing working memory load

and so allowing a limited working memory to process large amounts of

information, providing that information has, after learning, been stored in

long-term memory in the form of automated schemas. This configuration of

cognitive structures and functions has evolved to handle the information

humans must deal with.

C. Coordination of Information Structures and Cognitive

Architecture

The information structures and cognitive architecture described in the

previous sections can be assumed to be closely coordinated. Biological

evolution could be expected to ensure that coordination. The particular

information structures that the cognitive configuration has to deal with can

be expected to have been a major governing factor in the direction of the

evolution of that configuration. Accordingly, it is appropriate to establish

links between information structures and cognitive structures and, in

the process, attempt to answer questions concerning aspects of human

cognitive architecture. An important consideration is how human cognitive

architecture evolved to deal with high element interactivity material.

1. Schemas, Working Memory, and High Element Interactivity Material

High element interactivity material, by its very nature, must be processed

simultaneously in working memory. It cannot be processed element by

individual element and still retain its meaning. One might assume that the

obvious way human cognitive architecture would evolve to handle such

material would be to develop a suYciently large working memory to handle

many interacting elements simultaneously. Our cognitive architecture did

not, of course, follow this route. For reasons discussed later, humans have

not developed a large working memory when dealing with new information.

As a consequence of our limited capacity working memory, we are not able
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to process novel, high element interactivity material. When faced with novel

information that contains many interacting elements, we inevitably fail to

understand it. Understanding requires all interacting elements to be

processed simultaneously, at least at some point, and when confronted

with many interacting elements, processing all of them simultaneously in

working memory is impossible. As indicated earlier, if we feel impelled or

motivated to process such information, the best that can be done is to rote

learn some aspects of the material.

Rather than develop a large working memory to handle novel,

information-rich, high element interactivity material, our cognitive architec-

ture has evolved to deal with such information by first integrating it into

schemas held in long-term memory. Interacting elements can be incorpor-

ated within a schema and that schema can then be treated as a single element

within working memory. Because those schemas can be processed in

working memory as a single element, they eliminate the problem of a

limited working memory. Our cognitive architecture has evolved so that

very high element interactivity material encompassing large amounts of

information can only be handled when incorporated in schemas. It follows

that such material can only be fully processed in working memory after

extensive learning has occurred, sometimes over very long periods of time.

Until learning through schema acquisition and automation has taken place,

the human cognitive system cannot adequately deal with very complex, high

element interactivity material. After learning, such information rich material

is handled easily and smoothly.

2. When Working Memory Is Unlimited

A limited capacity working memory is a central concept in cognitive

psychology. Since Miller (1956) and Atkinson and Shi Vrin (1968), most

discussions of human cognitive architecture have incorporated a limited

capacity short-term or working memory. It is appropriate that they should

do so because working memory is limited when dealing with new

information. Nevertheless, capacity limitations only apply when dealing

with new, not old information. When dealing with previously learned

material, the only discernible limit on working memory is the amount that

has been learned and stored in long-term memory. Massive, seemingly

unlimited amounts of information can be processed by working memory

providing they have previously been incorporated in schemas. A schema

may contain a large amount of information but will be processed in working

memory as a single element.

The tension between a very limited working memory when dealing

with new information and an unlimited working memory when dealing with
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learned material can be seen as far back as Miller’s (1956) paper. Miller’s

concept of ‘‘chunking,’’ which today can be incorporated in the more

sophisticated conception of schema construction, altered the amount of

information that short-term memory could hold. By chunking together

elements of information, the amount of information held by short-term

memory could be increased. In that sense, learning could be used to increase

the eVective capacity of short-term memory. Similarly, while working

memory can only process a limited number of schematically based elements,

what constitutes an element is entirely dependent on what has been learned.

If much has been learned, an element can incorporate a massive amount of

information. Indeed, there may be no limit to the amount of information

incorporated in a schema that acts as a single element in working memory.

In that sense, there is no limit to the amount of information that can be

processed by working memory. The capacity limitations of working memory

appear only when new, unorganized information that has not yet been

organized into schemas must be processed.

Empirically, de Groot (1965) and Chase and Simon (1973) provided the

strongest early evidence for this phenomenon. Chess experts with their

appropriate schemas can hold an entire board of chess pieces taken from a

real game in working memory because they have a schema for that confi-

guration. Novices have to remember each piece individually, which is beyond

working memory capacity, as are random configurations for experts. This

result has been obtained in a wide variety of areas (e.g., Egan & Schwartz,

1979; JeVries, Turner, Polson, & Atwood, 1981; Sweller & Cooper, 1985).

The ability of working memory to hold and process large amounts of

learned information for long periods of time was recognized by Ericsson and

Kintsch (1995). Their concept of ‘‘long-term working memory’’ applies to

very well-learned material. For such material, the capacity limitations of

‘‘short-term working memory’’ disappear. Large amounts of domain-

specific, well-learned material in complex areas such as text comprehension,

chess, and music can be held and processed in working memory for long

periods. The usual capacity and duration limits associated with working

memory are not in evidence for such well-learned material.

In eVect, we are dealing with two continua: A learning continuum and a

working memory limitations continuum. At one extreme, when dealing with

yet-to-be-learned or unlearned material, well-known working memory

limitations are relevant to processing. At the other extreme, when dealing

with well-learned material, the usual working memory limitations are

irrelevant and working memory can best be described in terms of Ericsson

and Kintsch’s (1995) long-term working memory. Thus, in this chapter,

long-term working memory is incorporated at one end of a working memory

continuum rather than as a discrete structure. Rows 1 and 5 of a cognitive
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matrix of continua (see Fig. 1) depict the learning and working memory

continua, respectively.

This chapter is concerned primarily with the intervening constructs

relating unlearned material and a limited working memory at one extreme of
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the matrix of continua and relating well-learned material and an unlimited

working memory at the other extreme. While learning through schema

acquisition eliminates the problem of a limited working memory having to

handle large numbers of interacting elements (the right side of the matrix of

continua), the question remains why human cognitive architecture evolved

in this manner rather than following the apparently more straightforward

route of a larger working memory, either as an adjunct to or even as a

substitute for some learning mechanisms. That route of a larger working

memory would have permitted larger amounts of new material to be

processed. There should be evolutionary reasons why that route was not

followed.

D. A C ognitive M atrix of Continua

Information we deal with can be placed on a learning continuum extending

from new material for which there are very limited schemas available to

well-learned material with its elements incorporated into an extensive

schematic framework. The first row of Fig. 1 indicates the two extremes of

this learning continuum.

The second row is concerned with schemas. While the characteristics and

functions of schemas were discussed previously, they have one additional

function that is less commonly considered: Schemas held in long-term

memory provide working memory with a central executive. Furthermore,

they may be the only structure available to provide a central executive for

working memory. The second row of Fig. 2 indicates the two extremes of the

schema-based, central executive function continuum.

A schema, acting as a central executive, coordinates information. It

indicates which information can be ignored, which information is

significant, and how the elements of significant information relate to each

other. A well-established, automated schema acts exactly as we would

expect an eVective central executive to act. Both incoming information and

the responses to that information can be governed and coordinated by

schemas. Provided schemas are available, no other central executive

function is required for humans to process information. Of course, schemas

must be learned and activated and so are not always available.

Evidence for the central executive function of schemas comes from one

of the conditions under which problem solving fails. If a problem solver

learns to solve a class of problems using a particular technique, he or she

will continue to attempt to use the technique even when presented a

problem with a similar surface structure for which it is inappropriate. This

mental set, or Einstellung, was demonstrated by Luchins (1942) using his

well-known water jar problems (see also Ben-Zeev & Star, 2001; Fingerman
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& Levine, 1974; Levine, 1971; Ross & Kilbane, 1997; Sweller, 1980a,b;

Sweller & Gee, 1978.) The eVect occurs because a schema is acquired

when learning to solve an initial set of structurally similar problems. That

schema then directs the solution of all subsequent similar problems in

exactly the manner to be expected of a central executive. On the one hand, it

permits the solution of problems that would be quite insoluble without an

appropriate schema. On the other hand, it continues to organize the

elements and solution procedures of other, structurally dissimilar problems

that have similar surface features even when the solution procedures are

quite inappropriate. As a consequence, the solution will either be delayed or

fail entirely. In contrast, a person presented such a target problem without

first having acquired the inappropriate schemas will have no diYculty

solving it. The frequently spectacular contrast between the performance of

people with and without inappropriate problem solving schemas demon-

strates Einstellung. In the process, the central executive function of schemas

is revealed graphically.

While schemas held in long-term memory provide a central executive for

working memory at the well-learned end of the learning continuum, it can

be argued that there is no available central executive at the other end of the

continuum when dealing with new, yet-to-be-learned material. Two

arguments can be put forward against the notion of a coordinating central

executive when dealing with new, yet-to-be-learned information for which

no schema is available. The weaker argument simply states that the

characteristics of a central executive have not been suYciently well specified

to be assured that it exists and, in any case, there is no real empirical

evidence for any possible central executive-type construct. This argument is

not pursued further because it is overridden by the stronger argument,

which is that the very concept of a central executive dealing with yet-to-be-

learned material in a nonrandom manner leads to an infinite regress and so

is logically impossible.

Consider a central executive coordinating new information in a

nonrandom manner. The executive must make decisions on how infor-

mation is to be dealt with in that it must decide which elements will be

combined, coordinated, or related in some fashion. In other words, it must

decide on how the information will be processed. That information is both

new and infinite in scope. It is new in the sense that the executive has not

dealt with such information before and it is infinite in that there is no limit

on the types of information or how that information will have to be

combined or processed. Other than randomly, how does the central

executive decide how to deal with this potentially infinite range of new

information? It cannot draw on previous knowledge because the material is

new. It could use biologically programmed or ‘‘hardwired’’ procedures for a
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limited number of activities but not for the infinite range of information that

humans can potentially deal with. (It will be assumed that we are not

hardwired to deal with each of the procedures of complex mathematics, for

example.) If these assumptions are correct, there is only one other way a

nonrandom central executive can arrive at a decision. If the information is

to be dealt with in an orderly fashion, it must have another executive

function available to direct it. However, the logic of a second executive will,

of course, be identical to the logic of the first, requiring a third executive, etc.

This infinite regress indicates that the entire concept is flawed and requires

replacing. Mechanisms other than a schema-based central executive are

required to coordinate new, unlearned information.

If there is no central executive available to coordinate new, yet-to-be-

learned elements, how are these elements dealt with? Research into problem

solving provides an answer and also provides the third row, the problem-

solving search continuum of the matrix of continua. Problem solving search

is required precisely when we are faced with new information for which we

have yet to acquire appropriate schemas. Critical research in the early 1980s

on expert–novice distinctions (e.g., Chi et al., 1982; Larkin et al., 1980)

clearly established that when faced with a novel problem for which a learned

solution is not available (i.e., a problem being dealt with by a novice with

respect to that class of problems), people engage in problem-solving search

using a weak strategy such as means-ends analysis (Newell & Simon, 1972).

Using this strategy, problem-solving moves are generated by attempting to

find operators that will reduce di Verences between each problem state

attained and the goal or a subgoal. In other words, faced with a novel

situation, people use general problem-solving search strategies in an attempt

to impose some order and choose between various element combinations.

The purpose of those search strategies is to attempt to coordinate yet-to-be-

learned elements with the external environment. This process of matching is

only required when faced with new material for which adequate schemas

have yet to be acquired. With respect to the cognitive matrix of continua of

Fig. 1, problem-solving search flows directly from the left side of the first

two rows of the matrix of continua. That is, it occurs because a person is

dealing with new, unlearned material for which there is no schema-based

central executive.

At the well-learned end of the continuum, problem-solving search is

unnecessary. On the right side of the matrix, when dealing with well-learned

material for which well-established schemas are available, the schemas

themselves generate problem-solving moves (Larkin et al., 1980). Problem-

solving search to coordinate and establish relations between elements is

unnecessary because schemas provide all of the necessary relations. In

between the two extremes of the third row of the matrix, search becomes less
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and less important, moving from the point where moves are generated by

problem-solving search to the point where they are generated by schemas.

Thus, the third continuum, the problem-solving continuum, has been

established and related to the learning and central executive continua.

The first three continua lead to the critical fourth continuum that provides

a direct explanation for working memory characteristics when dealing with

both new and well-learned material. On the left side of the matrix, operators

and problem states must be chosen during problem-solving search in the

absence of schemas and their executive function. A major function of

problem-solving search is to impose adegree of order onotherwise disordered,

more or less random, combinations of elements. This order is imposed by

attempting, as far as possible, to use the environment to provide appropriate

relations between elements. Random combinations of elements are held in

working memory, and attempts are made by problem-solving search to order

them in a manner that reflects the environment. Once an appropriate set of

relations has been established, the goal of the problem has been attained.

It is frequently forgotten that by necessity, problem-solving search

conducted without solution knowledge of moves or element combinations

must include a random component. Consider means-ends analysis as an

example of a strategy that does not rely on a heavy knowledge base. This

strategy requires considerable control and has a relatively small random

component. Nevertheless, a random component cannot be fully eliminated.

The strategy involves first choosing a move and then testing it to see whether

it reduces diVerences between a current problem state and the goal or a

subgoal state. Checking whether a move reduces diVerences between the

current problem state and the goal state cannot occur before the move has

been chosen. It must occur after the move has been chosen. If there is no

prior knowledge concerning the eVect of the move (in the form of schemas

or partial schemas), it must be chosen randomly. Only after it has been

chosen can it be assessed for eVectiveness. There is a high degree of control

in that diVerences between current and goal states are extracted before

moves are chosen and moves that do not reduce diVerences between the

current and goal states are rejected. Nevertheless, in the absence of prior

knowledge, which moves are chosen for testing using the means-ends

heuristic must be random. In the absence of a central executive, there is no

other technique available. Other than a random mechanism, there can be no

knowledge-free procedure for initially choosing moves to test to see if they

reduce diVerences between current and goal states. As a consequence, on the

left extreme of the element combinations continuum, random combinations

of elements are necessarily the norm.

With random choice, the greater the number of alternative subgoals and

operators from which to choose while problem solving, the less likelihood
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that an appropriate choice will be made. As the number of choices available

increases, the probability of a choice leading to a dead end also increases.

With increased choice, problem-solving search becomes decreasingly

eVective and, indeed, with even a moderately large number of choices,

search becomes pointless. Making an appropriate choice out of two or three

at each choice point is feasible. Choosing out of several dozen or more

alternatives at each choice point would render the process futile. Problem-

solving search is more likely to be eVective if it can be limited, and our

cognitive architecture had to evolve to ensure that it is always limited

because anything beyond a small search space reduces the probability of

arriving at a solution to almost zero.

With increasing knowledge, the random choice of elements decreases. At

the right extreme of the element combinations continuum, well-learned

material has schemas to coordinate elements, and problem-solving search is

unnecessary with all element combinations ordered by previously acquired

schemas. It is only after learning has occurred that problem-solving search is

not needed to order elements because they are ordered by schemas.

We are now in a position to consider the last continuum, the working

memory limitations continuum (the fifth row of the cognitive matrix of

continua), and to indicate why working memory must be limited when

dealing with new, yet-to-be-learned material. The need for a random

component when combining elements through problem-solving search

leads directly to a requirement for working memory to have a severely

limited capacity. Consider someone dealing with two new elements. While

the manner in which elements should be combined will vary depending on

the material being dealt with, assume that they must be combined using

the logic of permutations. There are two (2!) unique ordered permutations

possible for two elements (ab or ba). As the number of elements increases,

the number of permutations rapidly becomes very large (5! ¼ 120). The

way in which these elements should be combined can be handled easily by

a system with a schema-based central executive determining the

appropriate combination, as occurs on the right side of the matrix of

continua, dealing with well-learned material. Without a central executive,

on the left side of the matrix dealing with new material requiring problem-

solving search and its attendant need to combine elements randomly, no

more than two or three elements can be handled because any more

elements would result in more potential combinations than could be tested

realistically.

It may be for this reason that we have evolved with a limited working

memory. When dealing with new, interacting elements that have not been

learned (i.e., have not been formed into schemas), there is no structure that

can indicate the manner in which the elements should be combined and so
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the need to combine any more than two or three elements can result in a

huge number of possible combinations that could not be tested properly

against reality. A limited working memory ensures that combining a large

number of elements in the absence of a controlling schema cannot occur.

Such combinations of many elements would rarely reflect reality. The

proposal that working memory is limited in order to limit the number of

element combinations that require testing constitutes a central core of this

chapter.

The suggestion that a limited working memory may have advantages

when processing information under some conditions has been made

previously. Both Dirlam (1972) and MacGregor (1987) provided a formal

analysis indicating that search is most eYcient when the number of items

being dealt with closely approximates the number of items that can be held

in working memory. Elman (1993) and Newport (1990) suggested that by

constraining the search space for grammatical forms, a limited working

memory is an advantage when learning a language. Kareev (1995) indicated

that when dealing with correlations, a smaller sampling size increases the

probability of the sample having a correlation stronger than the population.

Thus, if a relation exists, a limited capacity working memory could have the

eVect of increasing the probability of its being detected. Kareev, Lieberman,

and Lev (1997) provided data indicating that people with smaller working

memories were more likely to perceive a correlation than people with larger

working memories. Taken together, these suggestions all indicate that there

may be advantages to a limited working memory when dealing with new

material, and the commonsense view that a larger working memory should

be advantageous may be erroneous.

In summary, the manner in which our cognitive architecture interacts

with information can be represented by a matrix that incorporates five

parallel continua: (1) a yet-to-be-learned to well-learned continuum in which

the extent that individuals have learned the material (i.e. acquired schemas)

that they are faced with increases; (2) an uncontrolled to schematically

controlled central executive function continuum in which the degree to

which schemas control working memory processing increases; (3) a problem-

solving search continuum in which the need to solve problems by

problem-solving search varies from essential to unnecessary; (4) a random

to ordered combination of elements continuum in which the manner in

which elements combine varies from random to ordered; and (5) a working

memory limitations continuum with working memory limitations critical at

one end and irrelevant at the other.

These five continua are linked causally providing a matrix. On the left side

of the matrix, new material that is still to be learned has no central executive

coordinating high interactivity elements. Some degree of coordination only
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can be provided by problem-solving search that incorporates testing the

eVectiveness of random combinations of elements. When dealing with these

element combinations, a limited capacity working memory is essential to

prevent a combinatorial explosion. In contrast, on the right side of the

matrix, well-learned material has schemas providing a central executive

function. Problem-solving search is not required because schemas provide

ordered combinations of elements. Interacting elements are incorporated

within schemas, resulting in no eVective working memory limits when

dealing with such well-learned material. Examples demonstrating the

relations incorporated in the matrix are discussed in detail in the next two

sections.

1. Processing Well-Learned Material

Assume a person is faced with a high element interactivity task such as

navigating from one location to another in a city. How the person deals

with that task depends on the learning continuum. The right side of the

matrix of continua of Fig. 1 is considered in this section. At this extreme,

the person will have learned all that is needed to handle the information using

automated schemas. Where to turn, the consequences of being in one traYc

lane rather than another, and even where there are bumps or potholes in the

road are all incorporated in appropriate schemas. At this extreme of the

matrix of continua, schemas act as a central executive when brought into

working memory. They coordinate the huge number of sensory inputs and

motor outputs with virtually no load on working memory. All the myriad of

elements associated with driving from point a to point b are ordered and

organized by the appropriate schemas. The driver will not engage in

problem-solving search and may arrive at the destination with almost no

conscious eVort. Working memory limitations do not impinge on perform-

ance at this end of the continuum because the automated schemas generating

actions do not impose an appreciable working memory load. Other activities

requiring working memory, such as holding a conversation or thinking about

an unrelated activity, can be carried out easily because little working memory

capacity is required for navigation.

Similarly, for any well-learned activity, such as reading a book, using a

computer, going for a walk, and listening to music, schemas tell us what to

listen or look at, what to do, and when to do it. For such material, the well-

learned nature of the information permits schemas to govern and coordinate

the various elements; this central executive function of schemas allows huge

amounts of information to be both held and processed in working memory.

Problem-solving search to establish appropriate relations between elements

does not occur. It has no function because suitable schemas determine all
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relations between elements. Under these conditions, working memory

limitations are not in evidence (Ericsson & Kintsch, 1995), providing we do

not come across new, unfamiliar material for which we have not acquired

schemas. When faced with new, unlearned material (i.e., material for which

a schema is not available to act as a central executive) diVerent processes are

required.

2. Processing Novel, Yet-to-be-Learned Material

In contrast to a traveler at the highly learned end of the learning continuum,

consider someone at the other end of the continuum, represented by

the left side of the matrix of continua of Fig. 1. This person is traversing the

route for the first time and so has few or no schemas to coordinate

the elements of information. There is no well-defined, schema-based

central executive to deal with the information. In the complete absence

of a schema-based central executive, problem-solving search to ascertain

a suitable route will be required. As indicated earlier, when engaged in

problem-solving search, at certain points there is no choice but to

combine and test elements randomly. In this particular case, that

requires choosing roads on a random basis and testing the consequences

of the choice either mentally or physically. That means while we can

consider the consequences of choosing a particular direction, we can only

do so after deciding to consider that direction, not before. In the absence of

knowledge, the decision to choose a particular direction for consideration

must be random. More frequently, partial executive functions can be

provided by other sources (e.g., a map) and, indeed, precise, ongoing

instructions from someone else can provide full executive functions.

Nevertheless, in the absence of suitable domain-specific schemas to

coordinate elements of information, the person normally will need to

engage in problem-solving search using a general problem-solving strategy

such as means-ends analysis. Using this problem-solving strategy, the

problem solver must attempt to find problem-solving operators that will

reduce the diVerences between the current problem state and a goal or

subgoal state. These operators must be chosen randomly but can be

tested mentally for their consequences using means-ends analysis, a process

that is very expensive in terms of the limited working memory resources

available at this extreme of the matrix of continua (Sweller, 1988).

The left side of the matrix of continua applies to a wide variety of

intellectual tasks. When listening to or reading unfamiliar, high element

interactivity material, various aspects of the material need to be related in

order to derive meaning. If the relations are not incorporated in schemas,

they will need to be processed in working memory, which will require a
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problem-solving process to determine which relations are appropriate.

Initial attempts to establish connections between referents, for example, will

contain random components and so some attempted relations will be

inappropriate and fail, resulting in a comprehension failure. To understand

the statement ‘‘Initial attempts to establish connections between referents

will contain random components,’’ the listener or reader must establish that

‘‘random components’’ refer to the ‘‘attempts’’ and not the ‘‘connections’’

or ‘‘referents’’ directly. To understand text, the number of such attempted

relations must be limited in order to prevent a numerical explosion of

possible relations that would permanently prevent comprehension. A

limited working memory reduces the number of possible relations allowing

the prospect of comprehension. Nevertheless, if there are too many possible

relations not previously incorporated in schemas, comprehension will fail

(e.g., Britton & Gulgoz, 1991). In contrast, schematic control determines

which relations between interacting elements are appropriate and embeds

them within schemas. A schema for a statement includes all of the

interacting elements within it and can be processed readily in working

memory. As a consequence, large amounts of information can be processed

with a limited working memory load, allowing very complex relations to

exist and thus ensuring comprehension.
II. Human Information Processing Recapitulates Evolution by

Natural Selection

The manner in which information is processed by the human cognitive

system, as described earlier, recapitulates the manner in which natural

selection handles information of the genetic code that results in the

perpetuation and evolution of species. Both systems consist of very large

bodies of information that control the activities of natural entities that

must continually adapt their behavior to a complex environment. It can be

argued that the structure of such information systems happens to have

certain fixed characteristics irrespective of the particular entity they control

or the specific activities of that entity. As a consequence, both natural

selection controlling the adaptation of organisms to their environment and

the cognitive structures that control human behavior incorporate a single,

natural system of information that underlies both processes.

There are several features of such a natural system of information.

(1) Natural information systems consist of an information store suYciently

massive to permit them to behave appropriately in a complex environment.

(2) Any alteration or variation to the information store is tested against

the environment for eVectiveness with eVective alterations added to the store
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while ineVective alterations are deleted. (3) All natural variations to the

store are necessarily random. (4) Because large random variations will

almost certainly destroy the functionality of the store, mechanisms must

exist to ensure that most variations are small. The validity of each of these

propositions is considered in more detail.

A. The Size of Information Stores

Information stores that coordinate activity with a complex, natural

environment over extended periods of time are necessarily massive. Many

natural environments are complex in the sense that they can be

characterized by a large variety of states. While any single, simple physical

attribute of an environment, such as temperature, pressure, radiation, or

chemical composition, may have narrow limits under some circumstances,

combinations of attributes frequently result in a constantly altering

environment. Information stores governing the activity of an entity must

be capable of coordinating that activity with its variable environment. In

general, the more variable an environment, the greater the size of the

information store required to coordinate activity with that environment.

The complexity of an environment must be matched by a commensurately

complex information store.

The genome of a species provides an example of the required size of a

natural information store. The genetic information contained within the

genomes of organisms surviving in complex environments must be massive

in order to permit survival. The human genome consists of about 3 billion

base pairs. While much of this information appears not to be used in genes,

humans still have an estimated 30,000 or more genes. This enormous store

of information is required to coordinate complex human activity with our

environment. In contrast, the much simpler activity of yeast requires about

1/200th of the number of base pairs and approximately 1/5th of the number

of genes of a human. The simpler activity of yeast requires a much smaller

store of information. Nevertheless, in an absolute sense, even information

stored in the genome of yeast is very large. (It also needs to be noted that

there may be no simple numerical contrast that can be used to correlate

genetic factors and species complexity. While there may be some correlation

between the number of base pairs in the DNA of species and their

complexity, some very simple species have many more base pairs than

humans. Furthermore, the recent consensus that humans have about

100,000 genes has been broken since the successful mapping of the human

genome. The estimated number of genes now varies from 30,000 to 40,000

with the lower number more probable. That number is only marginally

larger than for a plant. Complexity may be incorporated in each gene rather
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than expressed by the number of genes. It appears that human genes are

more complex than that of simpler organisms, with human genes generating

more protein products. See Aparicio, 2000; International Human Genome

Sequencing Consortium, 2001.)

The large store of information contained within a species’ genome is

mirrored by the large store of information held in human long-term

memory. Information held in long-term memory governs human behavior

in an analogous manner to a genetic code governing the behavior of a

species. Rows 1 and 2 (the learning and central executive function

continua) of the cognitive matrix of continua depicted in Fig. 1 can be used

to substantiate the analogy. On the right side, a very large store of well-

learned material determines much human behavior. Similarly, a large store

of genetic information determines the characteristics of a species. Human

behavior is not permanently fixed, and the left side of the learning and

central executive continua reflects the fact that common patterns of

behavior must alter to reflect a changing environment. Because genetic

characteristics of a species must also change to reflect a changing

environment, mechanisms to aVect genetic change are built into the genetic

system.

B. Testing the Effectiveness of Variations in an Information Store

against an Environment

The manner in which variations to natural information stores are tested for

eVectiveness can be described by rules. The general rule is that a variation

that more closely coordinates activity with an environment will tend to

persist, whereas a variation that decreases the coordination of activity with

an environment will disappear. This rule is referred to as the environmental

coordination rule. Particular versions of this general rule can be described

for both evolutionary biology and the manner in which human cognitive

architecture handles information.

The mechanism of natural selection is well known. OVspring retain many

of the characteristics of their parents, and individuals with more

advantageous variations leave more oVspring than individuals with

less advantageous variations. Natural selection is an example of the

environmental coordination rule. Information contained in a genetic code

will persist if that code results in activity that is well coordinated with an

environment. Information will disappear if activity is poorly coordinated

with an environment. An alteration that increases coordination of activity

with an environment will result in permanent changes to the genetic code.

An alteration that decreases coordination with an environment will result in

no permanent changes to the genetic code.
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The environmental coordination rule applies equally to humans

processing information. The rule is reflected in the third row of the matrix

of continua, the problem-solving search continuum. Humans will generally

use information in long-term memory to govern their activity (on the right

of the problem-solving continuum). Any departures from the use of that

information will be tested for eVectiveness against the environment using

problem-solving strategies such as means-ends analysis. Novel procedures

that coordinate activity with the environment more accurately are likely to

be retained in long-term memory and used again. The long-term memory

store is altered by successful procedures. Procedures that fail to coordinate

with the environment will not be retained in long-term memory and tend not

to be used again. The long-term memory store is left largely unchanged by

unsuccessful procedures. This mechanism is closely analogous to evolution

by natural selection.

C. Random Variations to Natural Information Stores

Variations to natural information stores occur randomly. Random genetic

variation mechanisms are well known. Mutation and sexual recombination

result in random variations and without these mechanisms, no natural

alterations to a genetic code would occur. Barring deliberate human action,

there is no other mechanism available. Similarly, and as indicated earlier,

barring knowledge held in long-term memory indicating which moves to

make when faced with a problem, moves can only be generated randomly as

indicated on the left side of the elements combinations continuum of the

matrix of continua. Until the knowledge base can be brought into play

allowing movement to the right side of the elements combinations

continuum, move generation is necessarily random, just as mutation and

genetic recombination are random. Material deliberately intended to have

an educative function provides the only exception to these mechanisms.

Education techniques can reduce or eliminate the random generation of

problem-solving moves (see later), just as the deliberate alteration of a

genetic code substitutes for the random variations due to mutation and

genetic recombination.

Both the historical reasons for and the consequences of the concept

of random variations to natural information stores need to be carefully

noted. Random variation was required to explain the evolution of

species through natural selection without a guiding intelligence and provides

one of the major functions of the theory of evolution. In other words,

evolution by natural selection does not have a ‘‘central executive’’ to guide

the process. Indeed, in the many theologically motivated debates concerning

the theory of evolution, there appears to have been a tacit consensus that no
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natural, as opposed to supernatural, candidate for an intelligence guiding

the evolution of species was available. All of the ‘‘intelligence’’ of the system

resides in genes. A requirement for a second intelligence to guide the manner

in which genes evolve would require a third to guide the second and so on,

resulting in an infinite regress. Random mutation and natural selection act

as substitutes for an additional intelligence.

One purpose of this chapter is to suggest that human cognitive

architecture similarly has no natural intelligence in the form of a central

executive guiding the generation of novel procedures. There is a natural

intelligence in the form of schemas held in long-term memory that

guide previously learned procedures that have been established as eVective.

Those schemas govern the vast bulk of human behavior, including

determining what new material should and should not be learned. As

indicated previously and as is the case for evolution by natural selection,

that stored information incorporates intelligence. An additional intelligence

(or central executive) would require an infinite regress to function. When

schematic knowledge held in long-term memory is not available or when

guidance from other humans who hold such knowledge is not available,

only random selection of mental actions is possible. Of course, knowledge

gained from those randomly selected mental actions can be retained in

long-term memory, which ensures that subsequent actions are intelligent

rather than random. Analogously, genetic codes provide a natural intelli-

gence to guide the continuation of a successful species. When suitable codes

are not available, random mutations determine which codes will be oVered

to the environment for testing as part of the processes of natural selection.

D. The Size of Random Variations to a Natural Information Store

Natural information stores have mechanisms to ensure that variations to

the store are small. If, in order to deal with a very complex, variable

environment, a store is very large, then relative to its size, any usable

alterations will constitute a minute proportion of the total store. A

large variation in the store will almost certainly disrupt essential functions

and so is incompatible with the continuation of a natural store in a natural

environment.

Individual mutations and genetic recombination that permit continuation

of a species constitute a very small proportion of a genetic code. A

substantial genetic shift will take many thousands or even millions of years.

The huge overlap in the genetic code of species that separated millions of

years ago is a testament to the stability of genetic codes. Changes over short

periods are minute. Only such small variations are viable. Large variations

do not survive. Similarly, as indicated by the working memory limitations
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continuum, human working memory ensures that alterations to the long-

term memory store are relatively slow and small.

In summary, mutation and sexual recombination result in quite random

variations analogous to the random choice of moves faced by a person

solving a problem for which schema-based solutions are not available. The

usefulness or otherwise of a genetic variation can only be assessed after it

has occurred. If it is successful, information in the genetic code will be

passed on to subsequent generations, whereas a failure will result in a

genetic dead end with the information not passed to subsequent generations.

Similarly, when limited or no knowledge is available to a problem solver,

moves must be chosen randomly. Successful moves may be incorporated in

schemas that then can be used indefinitely when faced with similar

circumstances. Unsuccessful moves result in dead ends with information

not incorporated in schemas and not used subsequently.

Under this formula, a schema encapsulates psychological information in

the same way that a gene encapsulates genetic information. Both can be

reproduced indefinitely, providing the environment supports the use of that

information. Nevertheless, alternative schemas/genes may be more appro-

priate for environmental conditions. If inappropriate, the structure of the

information encapsulated in schemas or genes must change. Changes or

variations are generated randomly and tested against the environment. If

successful, a new schema or gene will be constructed and used in future.

Thus, natural selection and the processing of information by human

cognitive architecture can be characterized as identical ways of handling

very complex information.

E. Generating Additional Matrices of Continua

This analysis suggests that the cognitive matrix of continua depicted in Fig. 1

is a specific example of a more general matrix from which examples such as

that of Fig. 1 can be generated. If so, that more general matrix should be

capable of generating not only the psychological example of Fig. 1, but also

a specific example applicable to evolutionary biology. The ability to

generate a general matrix from Fig. 1 and to generate, in turn, an example

applicable to evolution would provide evidence for the argument that

common information structures underlie human cognitive architecture and

evolution by natural selection. Figure 2 depicts a general matrix of continua

that can be used to generate specific matrices applicable to particular areas

that may have the same underlying information structures. Figure 3 depicts

the evolutionary example that can be derived from Fig. 2.

The first continuum of Fig. 1 deals with learning. On the left side of this

continuum, we need to learn (or adapt) when we do not have knowledge
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needed to function in a particular environment. On the right side, essential

knowledge has been acquired. In the more general terms of Fig. 2, on the left

side, the first continuum deals with an information system that is operating

in a novel context for which it is poorly adapted. It needs to adapt or
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‘‘learn.’’ On the right side, the system has already adapted or ‘‘learned’’

what is needed to operate in its environment. The first continuum of the

specific evolution by the natural selection continuum of Fig. 3 varies from
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organisms that are poorly adapted to their current environment and so need

to adapt to organisms that are well adapted to their environment.

The second continuum of each of the three figures is concerned with the

extent to which performance is guided by established rules. In the case of

Fig. 1, dealing with cognitive architecture, on the left side when faced with

new material, there are no schemas to guide performance. On the right side,

when dealing with familiar material, schemas determine actions. Thus, in the

general terms of Fig. 2, on the left there are no available rules to govern the

way the system should operate in its environment, whereas on the right there

are well-established rules. This general continuum is the second continuum

of Fig. 2. Translated into evolutionary terms, on the left we have a genetic

endowment that will not permit a species to survive without change, whereas

on the right we have a species with a genetic endowment that is well adapted

to the current environment.

If a system is not adequately adapted to its environment, it needs to alter.

The left side of the third continuum of Fig. 1 indicates that humans engage

in problem solving when faced with such a situation. On the right, where

material is well learned, adaptation or problem-solving search is unneces-

sary. The third continuum of Fig. 2 describes a general continuum in which

at one extreme, many new procedures are required to permit the system to

operate in the prevailing environment to a situation at the other extreme

where no new procedures are required because the system is well adapted to

the current circumstances. Similarly, in the genetic terms of the third

continuum of Fig. 3, many alterations to the genome are required for

survival on the left side of the continuum as opposed to no requirement for

alterations to the genome on the right side.

If change is required, what are the mechanisms of change? For human

cognitive architecture, the left side of the fourth continuum indicates that

change occurs randomly. (Recall that while the generation of possible

changes is random, assessment of the eVectiveness of possible changes is not

random.) On the right side of the continuum, change is not required because

previously acquired schemas indicate what actions to take faced with a

problem. In other words, we have a system that must generate new

procedures randomly and test them for eVectiveness at one extreme of the

fourth continuum of Fig. 2 or is able to use currently established procedures

at the other end of the continuum. In evolutionary terms, as depicted in the

fourth continuum of Fig. 3, random mutation and sexual recombination are

needed to generate changes to the genome and perhaps new species if a line

is to survive. Alternatively, at the other end of the continuum, the current

genome is satisfactory for survival without substantial alteration.

Finally, if elements are combined randomly, there must be mechanisms

that ensure combinatorial explosions are kept in check. The limited working
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memory on the left side of the fifth continuum of Fig. 1 provides such a

mechanism. In contrast, on the right side of the continuum, working

memory limitations are not needed and do not occur because previous

learning has ensured orderly and appropriate sets of elements irrespective of

the size of those sets. In general terms of the fifth continuum of Fig. 2, if new

procedures are being generated randomly, there must be mechanisms to

limit their complexity. Changes must be relatively small and simple to

reduce the number of possible changes and to reduce the probability that

any change will result in a breakdown of the system. On the right side of the

fifth continuum, procedures that are eVective need have no limits to their

complexity. In other words, while changes to the system must be small and

incremental, there are no limits to the complexity of the resulting system.

From the perspective of evolution by natural selection, while alterations to

the genome from one generation to the next are minimal, as indicated on the

left side of the fifth continuum of Fig. 3, that process, if permitted to

continue for a suYciently long period, can result in the immensely complex

genome referred to on the right of the fifth continuum. There may be no

limit to genetic complexity under such circumstances.

The isomorphism of Figs. 1, 2, and 3 provides evidence for the suggestion

that human information processing recapitulates evolution by natural

selection. They both share common information structures. It is understand-

able that the management of information by human cognitive architecture

and evolution by natural selection should be similar. Evolution by natural

selection is possibly the most eYcient, natural system for transmitting,

altering where necessary, and perpetuating information. It might be

expected that human cognitive architecture, which must also manage

information, would evolve to mimic the information processing procedures

of evolution by natural selection because both systems are based on the

general information processing procedures of Fig. 2.
III. Instructional Consequences

A. General Instructional Consequences

Instruction is only necessary toward the unlearned end of the learning

continuum of the cognitive matrix of continua (Fig. 1), and one of its primary

functions is to provide a partial substitute for the missing central executive at

this end of the continuum. Consider again someone wishing to learn the road

route from point A to point B. They can have someone explain the route, use a

road map, or use a combination of prior knowledge with a problem-solving

search to fill in the gaps. These activities function as a central executive in
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diVerent ways and have diVerent instructional consequences. Both an

explanation and a map are two diVerent forms of direct instruction, whereas

problem solving provides an example of exploratory learning.

An explanation provides a strong substitute for a cognitive central

executive. As one would expect from a central executive, it provides an

overarching set of instructions for the critical processes that must be taken.

Furthermore, the instructions can be followed with a minimum of

additional learning, such as learning to use a map. If the explanations are

adequate, all random processes are eliminated because the explanation, as a

central executive, tells the learner precisely what needs to be done. Once a

road route is learned, the learner moves to the right side of the matrix of

continua, and the schemas acquired take over from the explanation and act

as the central executive, rendering an explanation redundant.

A map, while it also acts as a substitute for a cognitive central executive,

requires more intermediate learning than an explanation before it can be

used. People need to learn to use a map before they can use it to learn a

particular route. Thus, learning to use a map has its own set of learning

continua, and until a person has acquired the map-reading schemas that

allow movement to the right side of the matrix of continua for map reading,

learning a route by using a map will be diYcult or even impossible.

Nevertheless, if map-reading skills have been acquired, a map, like

explanations, can provide a powerful central executive substitute. Used

properly the need to consider the consequences of random actions can be

totally obviated and can continue to be avoided until the schema-based

central executive on the right of the matrix of continua takes over the

executive functions.

Problem solving provides the least eVective substitute for a cognitive

central executive. There is no choice but to propose actions randomly and

then use the environment or prior knowledge to test the eVectiveness of

those actions as far as they can be tested. The learner is likely to move to the

right of the matrix of continua very slowly, and so for much of the learning

process, there is no eVective central executive function. Only toward the end

of the learning process, when schemas have been acquired, is an eVective

central executive available. Using this reasoning, problem solving may be

considered as a last resort instructional technique when other more direct

forms of instruction are unavailable.

The inadequate central executive function provided by problem solving

has other ramifications. Combining elements randomly and testing the

eVectiveness of combinations against reality require substantial working

memory resources (Sweller, 1988). The activity imposes a heavy working

memory load just at the point where working memory resources are at their

weakest because problem-solving search occurs at the new, yet-to-be-learned
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end of the learning continuum where working memory limitations are

relevant. The heavy working memory load associated with problem solving

can interfere with learning. Direct, fully guided instruction alternatives to

problem solving circumvent both the lack of a central executive and the

heavy cognitive load associated with search. On this analysis, direct guided

instruction, rather than problem solving, should be used as a means of

acquiring schemas. Substantial empirical evidence exists for this suggestion

(see Sweller, 1999; Sweller, van Merrienboer, & Paas, 1998; Tuovinen &

Sweller, 1999).

The contrast between direct guided instruction and exploration applies to

all material that needs to be learned, including material covered in

educational institutions. Learning to solve classes of mathematical

problems, write essays in history, run scientific experiments, or learning to

read and write must all be aVected without an adequate cognitive central

executive provided by schemas. Showing students how to solve mathemat-

ical problems, write particular types of essays, run experiments, or providing

direct instruction in how to read and write can all provide an eVective

central executive substitute and reduce the cognitive load associated with

problem solving, although care must be taken to ensure that the instruction

itself does not impose a heavy working memory load (e.g., Sweller,

Chandler, Tierney, & Cooper, 1990; Sweller, Mawer, & Ward, 1983). In all

cases, direct guided instruction can provide a temporary replacement for

schemas until they are acquired.

Indirect instruction provided by various discovery/exploratory techniques

oVers a less eVective central executive substitute with an inevitably high

random component. Direct guided instruction is eVective because it

reduces the number of random element combinations that must be tested.

It is likely to be essential for very high element interactivity material

for which the number of random combinations that must be tested will

be unacceptably high. The knowledge that lies behind such material could

only be derived by scholars engaged in the very lengthy, working memory-

taxing activities inevitably required when dealing with a multitude of

interacting elements that are not appropriately organized by a central

executive. Such problem-solving activity is unavoidable when neither

schemas nor direct instruction are available to act as a central executive

that indicates appropriate relations between elements. Humans learn

through problem solving not because it is eVective (empirical evidence

indicates unambiguously that it is not eVective as a learning device, see

Sweller, 1999; Sweller et al., 1998) but because they are forced to by the

environment and the lack of a central executive. Direct guided instruction

acts as a substitute for a central executive and should always be used if

available.
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B. Creativity

Creativity has always been a diYcult concept to deal with or even to define.

Nevertheless, most definitions of creativity incorporate the generation of

new ideas and, under such definitions, it is easy to assume that the general

instructional consequences discussed in the previous section leave no room

for human creativity or may even stifle creativity. In fact, the common

information processing structures of human cognitive architecture and

evolution by natural selection can provide a solution to the problem of

human creativity.

Evolution by natural selection has created innumerable functions,

procedures, and outcomes that vastly exceed the capability of human

cognition. We are not only unable to create what evolution by natural

selection has created, to this point we are unable to even understand many

of the products of evolution, with massive scientific enterprises being

devoted to precisely this cause. Given the much shorter time frame in which

human cognitive activity operates, it is not surprising that our creative

endeavors are unable to match those of evolution by natural selection.

Nevertheless, humans are and have been creative and that creativity can be

explained by the current theoretical framework. Based on the perspective of

this chapter, human creativity and the creativity exhibited by evolution by

natural selection are generated by the same mechanisms. Those mechanisms

are reflected on the left side of the matrices of continua. A knowledge base in

long-term memory or as part of a genetic code may become inadequate and

is altered by random processes; the knowledge base requires procedures for

testing the eVectiveness of alterations and only incorporating those that are

eVective; and the knowledge base must have mechanisms to protect it from

large random alterations that may destroy it. Using these mechanisms, both

evolution by natural selection and human cognition have been able to create

new and eVective structures.

It needs to be noted that on this analysis, random processes provide the

initial impetus for human creativity just as random mutation is critical for

the creativity of evolution by natural selection. There is no central executive

determining what is creative (left-hand side of the second continuum of

Figs. 1 and 3). Nevertheless, despite the initiating random processes,

creativity is critically determined by the current knowledge base, as it is

from that base that new creative actions are taken, just as it is the

information encapsulated in a genome from which random mutations can

determine new biological procedures and functions (fourth continuum of

Figs. 1 and 3).

Langley, Simon, Bradshaw, and Zytkow (1987) also suggested that

creativity depends on an appropriate knowledge base associated with
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conventional problem-solving search mechanisms. Some evidence for the

validity of their proposal comes from a production system that they

constructed that rediscovered some of the early laws of physics. That system

only had the knowledge base required to generate particular laws and so has

not been able to discover new scientific laws. If the theoretical suggestions

made in the current chapter are valid, no computational system is likely to

discover, as opposed to rediscover, new scientific laws unless it incorporates a

massive knowledge base with the mechanisms for small random alterations

of that base over long periods of time along with procedures for testing the

eVectiveness of those alterations. Such a system is currently not available.

Suggested procedures for ‘‘teaching’’ creativity arise periodically in both

psychology and education. None of these attempts has been able to obtain

widespread, empirical support. The current proposals imply that teaching

creativity is likely to be diYcult or impossible but that humans may no more

need to be taught how to ‘‘explore,’’ ‘‘investigate,’’ ‘‘discover,’’ or ‘‘create’’

than does evolution by natural selection. Only a knowledge base can be

taught and learned and that knowledge base will determine what can and

cannot be created.

It is, of course, possible that life on earth includes multiple mechanisms

that have creativity as one of their end results and that the creativity

exhibited by evolution by natural selection and by humans uses diVerent

mechanisms. Nevertheless, the thesis outlined in this chapter suggests a

single rather than multiple mechanism.

C. Specific Instructional Design Principles and Effects

There are a range of specific instructional design principles and eVects that

flow from the considerations outlined in this chapter. Cognitive load theory,

an instructional theory based on the combination of information structures

and cognitive architecture described earlier, has been used to generate those

instructional eVects.

1. The Goal-Free EVect

This eVect occurs when learners presented a conventional, goal-specific

problem in which the goal might be ‘‘calculate the value of angle ABC’’ in

the case of a geometry problem or ‘‘calculate the final velocity of the

vehicle’’ in the case of a kinematics problem learn less than learners

presented a nonspecific or goal-free problem. Examples of nonspecific goal

problems are ‘‘calculate the value of as many angles as you can’’ or

‘‘calculate the value of as many variables as you can.’’ The goal-free eVect

was obtained by Sweller and Levine (1982) and has been demonstrated on

many occasions (Ayres, 1993; Sweller, & Cooper, 1985; Burns & Vollmeyer,
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2002; Geddes & Stevenson, 1997; Miller, Lehman, & Koedinger, 1999;

Owen & Sweller, 1985; Paas, Camp, & Rikers, 2001; Sweller, 1988; Sweller

et al., 1983; Tarmizi & Sweller, 1988; Vollmeyer, Burns, & Holyoak, 1996).

It can be explained using the cognitive matrix of continua of Fig.1.

Assume a novice problem solver solving conventional problems by

means-ends analysis. As a novice, he or she will be on the left side of the

matrix of continua. To make moves, diVerences between the current state

and the goal state will need to be established, a potential move will need to

be chosen randomly (assuming prior knowledge concerning the eVects of

particular moves is unavailable), and each potential move will need to be

assessed to establish whether it reduces diVerences between the current

problem state and the goal state. Because working memory limitations are

relevant on the left side of the matrix of continua, this complex procedure

may leave few or no resources available to attend to schema acquisition.

When acquiring a schema, learners must engage in the quite diVerent

activity of learning to classify problems and problem states according to

their moves. As a consequence, learning may be inhibited.

In contrast, assume a problem solver who is presented goal-free problems.

The only activity that needs to be engaged in is to choose any potential

moves randomly and determine whether they can be made. Working

memory load is minimal. Furthermore, learning which moves can be made

given a particular problem state is central to schema acquisition. Sweller

(1988) suggested that this interpretation explains the goal-free eVect.

Presenting learners with goal-free problems may appear unusual if the

aim is to present learners with direct, fully guided instruction. Goal-free

problems reduce the guidance provided by a specific goal. For this reason,

the procedure is eVective, but only if all moves made under goal-free

conditions are useful in the sense that they need to be learned and practiced.

Not all problems have this characteristic. Some problems have a large or

even infinite number of moves that could be made with most moves serving

no function. For example, asking learners to make as many manipulations

as possible of the equation ða þ bÞ=c ¼ d can result in an infinite number of

manipulations, as one can legitimately add an infinite number of constants

to each side. Goal-free problems should not be used with such material and

so an alternative is required.

2. The Worked Example EVect

The use of worked examples can overcome the problem of goal-free

problems only being useful for a limited class of problems. There are

probably no classes of problems for which worked examples are not

potentially eVective.
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The worked example eVect occurs when learners who are presented with a

large number of worked examples to study learn more than learners

presented an equivalent number of problems to solve. The eVect has been

studied extensively (Carroll, 1994; Cooper & Sweller, 1987; Miller et al.,

1999; Paas, 1992; Paas & van Merrienboer, 1994; Pillay, 1994; Quilici &

Mayer, 1996; Sweller & Cooper, 1985; Trafton & Reiser, 1993).

Worked examples provide problem-solving guidance that can act as a

substitute for schemas that are unavailable to novices. They are the ultimate

form of direct instruction. Rather than engaging in the means-ends

problem-solving search process described earlier, learners can be guided by

a worked example acting as a substitude schema-based central executive.

The lack of such a central executive necessitates problem-solving search,

with its inevitable random components and working memory load found on

the left side of the matrix of continua. While psychologically the learner is

on the left side of the matrix of continua, a worked example allows him or

her to perform as though they are on the right side of the matrix. A good

example acts as a substitute for a schema-based central executive, eliminates

the problem-solving search with its random base, and reduces diYculties

imposed by a limited working memory because all necessary information is

incorporated within the example (see later sections on split-attention,

modality, and redundancy eVects). As a consequence, learning can be

facilitated by an emphasis on worked examples resulting in the worked

example eVect.

3. The Problem Completion EVect

Most demonstrations of the worked example eVect involve presenting

worked examples paired with very similar problems. Learners are presented

a worked example and are then immediately presented a very similar

problem to solve. This procedure ensures that learners are motivated to

study the worked example in order to ensure that they can solve the

following problem. The extent to which they can solve the following

problem also provides them with some feedback concerning their ability to

solve problems of that type.

Completion problems were invented as an alternative to this procedure.

Rather than presenting learners with full worked examples followed by

similar problems, they are presented with partial worked examples that

require completion. The partial worked example provides suYcient guidance

to reduce the problem-solving search and cognitive load, whereas problem

completion ensures that learners are motivated and receive feedback

concerning their knowledge of relevant problem types. Paas (1992), Paas

and van Merrienboer (1994), van Merrienboer (1990), van Merrienboer and
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de Croock (1992), van Merrienboer and Krammer (1987), and van

Merrienboer, Schuurman, de Croock, and Paas (2002) provided evidence

that completion problems have a positive eVect similar to that of worked

examples when compared to full problems. It is reasonable to assume that the

theoretical reasons for the problem completion eVect are identical to those

used to explain the worked example eVect.

4. The Split-Attention EVect

Not all worked examples are eVective. A worked example that is structured

in a manner that ignores working memory limitations may be no more or

even less eVective than solving the equivalent problem. Some worked

examples in some areas are conventionally structured in a manner that

requires learners to split their attention between multiple sources of

mutually referring information before mentally integrating those sources

of information. A conventional geometry worked example consisting of a

diagram and statements provides an instance. The diagram in isolation

provides no instruction. The associated statements, such as angle

ABC ¼ angle XYZ, are unintelligible without a diagram. Meaning can only

be derived from the worked example by mentally integrating the diagram

and the statements. Mental integration requires working memory resources

because learners must search for referents. When a geometry statement

refers to angle ABC, learners must search the diagram for angle ABC in

order to understand the statement. In eVect, the learner is not only on the

left side of the matrix of continua for geometry, but is on the left side of the

matrix for the particular example being studied. An act of problem solving

must be engaged in simply to locate appropriate referents. Locating

referents requires working memory resources that are unavailable for

learning geometry.

Because we do not normally have schemas for the labeling of particular

geometry diagrams, providing guidance in locating referents can be just as

beneficial as guidance in the more general terms discussed previously. Such

guidance can be provided by physically integrating diagrams and

statements. Rather than placing the statement angle ABC ¼ Angle XYZ

below or next to the diagram as normally occurs, the relevant statements can

be incorporated within the diagram so that a search for referents is

eliminated. If conventionally structured worked examples are compared

with physically integrated examples, results normally demonstrate an

advantage for the integrated versions, resulting in the split-attention eVect.

Various versions of the eVect have been demonstrated using a wide variety

of materials under a wide variety of conditions. Furthermore, as might be

expected, it is not restricted to worked examples but applies to any
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instructional material (Bobis et al., 1993; Cerpa, Chandler, & Sweller, 1996;

Chandler & Sweller, 1992, 1996; Mayer & Anderson, 1991,1992; Mwangi &

Sweller, 1998; Sweller et al., 1990; Tarmizi & Sweller, 1988; Ward & Sweller,

1990).

5. The Modality EVect

While physical integration of multiple sources of information can be highly

eVective, there is an alternative that is equally eVective and, under some

circumstances, may be preferable. The split-attention eVect relies on visual

modality with visual search being reduced by the use of physical integration.

Visual search means that the visual channel only (the visuospatial sketch

pad of Baddeley, 1992; Baddeley & Hitch, 1974) is being used and

overloaded under split-attention conditions. Considerable evidence, shows

that eVective working memory can be increased by using dual rather than a

single modality (e.g., Penney, 1989). While the visual and auditory

processors of working memory are not fully separate in the sense that one

does not obtain a simple additive increase in processing capacity by

presenting some material visually and some in auditory mode, there is

considerable empirical evidence of a measurable increase in working

memory capacity when using both modalities (Allport, Antonis, &

Reynolds, 1972; Brooks, 1967; Frick, 1984; Levin & Divine-Hawkins,

1974). From a theoretical perspective, capacity should increase to the extent

that visual and auditory processors can function autonomously without

sharing other cognitive structures that limit capacity. Some empirical

evidence of an increase in working memory capacity when using both

modalities also provides evidence for partial autonomy of the auditory and

visual channels.

The possibility of increasing working memory capacity using dual

rather than a single modality should have instructional consequences. For

example, under split-attention conditions, rather than presenting a diagram

and written text that should be integrated physically, it may be possible to

present a diagram and spoken text. Because the diagram uses visual

modality while speech uses auditory modality, the total available working

memory capacity should be increased, resulting in enhanced learning.

The instructional modality eVect occurs when learners, faced with two

sources of information that refer to each other and are unintelligible in

isolation, learn more when presented with one source in visual mode and the

other in auditory mode rather than both in visual mode. This eVect has been

demonstrated on a number of occasions (Jeung, Chandler, & Sweller, 1997;

Mayer & Moreno, 1998; Moreno & Mayer, 1999; Mousavi, Low, & Sweller,

1995; Tindall-Ford et al., 1997).
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6. The Redundancy EVect

Both split-attention and modality eVects occur under very specific

conditions. They are only obtainable when multiple sources of information

refer to each other and are unintelligible in isolation. For example, a

diagram and text will not yield either split-attention or modality eVects if the

diagram is fully intelligible and fully provides the information needed, with

the text merely recapitulating the information contained in the diagram in a

diVerent form. Under such circumstances, the text is redundant. The

redundancy eVect occurs when additional information, rather than having a

positive or neutral eVect, interferes with learning. For example, instead of

integrating a diagram with redundant text or presenting the text in auditory

form, learning is enhanced by eliminating the text.

There are many diVerent forms of redundancy. The previous diagram/text

redundancy occurs when a self-explanatory diagram has additional text

redescribing the diagram (Chandler & Sweller, 1991). Mental activity/

physical activity redundancy occurs when, for example, learning how to use

a computer application by reading a text has the added physical activity of

using the computer (Cerpa et al., 1996; Chandler & Sweller, 1996; Sweller &

Chandler, 1994). Either reading the text in a manual or, surprisingly,

physically using a computer can be redundant and interfere with learning.

Summary/detailed exposition redundancy occurs when a summary alone

results in enhanced learning compared to a full exposition (Mayer, Bove,

Bryman, Mars, & Tapangco, 1996; Reder & Anderson, 1980, 1982) Finally,

auditory/visual redundancy occurs when the same material, presented

simultaneously in written and spoken form, results in a learning decrement

compared to the material presented in written or auditory form alone

(Craig, Gholson, & Driscoll, 2002; Kalyuga, Chandler, & Sweller, 1999,

2000; Mayer, Heiser, & Lonn, 2001).

The redundancy eVect is one of the more surprising cognitive load

eVects, with many people finding it quite counterintuitive. Most of us feel

that even if additional explanatory material is not beneficial, at the very

least it should be neutral. In fact, the addition of redundant information

can have strong, negative consequences. The eVect can be understood

in cognitive load theory terms. If one form of instruction is intelligible

and adequate, providing the same information in a diVerent form will

impose an extraneous cognitive load. Working memory resources will

need to be used to process the additional material and possibly relate it

to the initial information. It is likely to be only after the learner has

processed the additional information that he or she will be aware that

the activity was unnecessary. At that point, the damage may have been

done.
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7. The Element Interactivity EVect

Split-attention, modality, and redundancy eVects all occur as a consequence

of instructional procedures designed to reduce working memory load. It

might be expected that the instructional procedures would only be eVective

where the material being learned imposed an intrinsically high cognitive

load. If material does not impose a high cognitive load, the additional load

due to inadequate instructional procedures may not matter a great deal

because working memory capacity may not be exceeded. An extraneous

cognitive load due to inadequate instructional procedures may be irrelevant

if the intrinsic cognitive load imposed by the structure of the information is

low. Because low element interactivity material has a low intrinsic cognitive

load, we can predict that cognitive load eVects may disappear when learning

such material. The eVects may only be obtainable using high element

interactivity material. Chandler and Sweller (1996) and Sweller and

Chandler (1994) demonstrated that split-attention and redundancy eVects

could be demonstrated readily using high element interactivity material but

disappeared when low element interactivity material was used. Tindall-Ford

et al. (1997) similarly found that the modality eVect could only be obtained

using high element interactivity material. Marcus et al. (1996) found that

diagrams for which we have schemas facilitated understanding when

compared to text but only under conditions of high element interactivity.

The finding that cognitive load eVects can only be obtained using high

element interactivity material demonstrates the element interactivity eVect.

It consists of an interaction between the split-attention, redundancy, and

modality eVects and the complexity (as measured by element interactivity)

of the material being learned. While it has not been tested using other

cognitive load eVects, there is every reason to suppose that it could be

obtained with all other eVects based on a limited working memory.

It has been suggested in this chapter that the particular interaction

between a limited working memory and a very large long-term memory had

to evolve in order to handle high element interactivity material. High

element interactivity material must be imbedded in schemas before it can be

handled by a limited working memory. The element interactivity eVect

indicates that when instruction deals with high element interactivity

material, then the characteristics of human cognitive architecture, such as

a limited working memory, become critical.

8. The Isolated Interacting Elements EVect

Consider a learner faced with new material. That learner is on the left side of

the cognitive matrix of continua. Consider further that element interactivity

of the information that must be assimilated is suYciently high to
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substantially exceed working memory capacity. Understanding cannot

occur because understanding requires all interacting elements to be

processed simultaneously in working memory. All the interacting elements

cannot be processed simultaneously in working memory until schemas have

been formed, but schemas will not be formed until the learner has moved

toward the right of the matrix of continua. Because the learner cannot

possibly understand the material until those schemas have been formed,

understanding and learning may appear impossible at first sight. When the

material is presented with all of its interacting elements, as it needs to be if

understanding is to occur, it cannot be processed in working memory

because it vastly exceeds working memory capacity. How does learning

occur under such circumstances?

One possibility (perhaps the only possibility) is that initially the elements

must be learned as though they are isolated, noninteracting elements. Once

suYciently sophisticated schemas have been constructed, understanding will

occur because the interacting elements can now be processed in working

memory. On this analysis, learning must precede understanding.

If this analysis is valid, it is reasonable to hypothesize that learning might

be facilitated by initially presenting very complex information to students in

isolated elements form without emphasizing or even indicating the

interactions between elements. Understanding of such instruction will be

limited, but once it has been learned, presentation of the full information

may permit understanding to occur. In contrast, presentation of the

complete information that potentially could be understood during initial

instruction may result in very little learning or understanding. Pollock et al.

(2002) obtained precisely this eVect. Learners presented isolated elements to

learn followed by the full set of interacting elements learned more than

learners presented the full set of interacting elements twice, demonstrating

the isolated interacting elements eVect.

9. The Imagination EVect

Assume a novice on the left of the cognitive matrix of continua has

acquired some schemas and is beginning to move toward the right of the

continua. To attain relatively high levels of expertise, further learning will

need to include automation of the previously acquired schemas that

normally includes continuing to study the material until desired levels of

performance have been attained. An alternative is to attempt to imagine

the procedures that have been learned. Imagining requires the learner to

mentally ‘‘run through’’ the procedures in working memory. For high

element interactivity material, processing information in working memory

is impossible until schemas have been acquired. Once they have been
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acquired and the learner has moved toward the right of the matrix of

continua, imagination techniques should be feasible and practice through

imagination should assist in automation. Continuing to study the material

should be unnecessary because studying high element interactivity material

is designed to provide the guidance necessary to reduce search while

acquiring schemas, as occurs on the left side of the matrix of continua. If

schemas have already been acquired, there is no longer any need to provide

instructional guidance to reduce search because, on the right of the matrix

of continua, the central executive function of schemas is now able to

operate. Using those schemas to imagine the procedures learned should

facilitate further learning through automation in a manner that studying

the instructions may not.

Cooper, Tindall-Ford, Chandler, and Sweller (2001) tested this hypothesis

and found that learners given instructions to ‘‘imagine’’ a set of procedures

that needed to be learned performed better than learners given conventional

‘‘study’’ instructions. This imagination eVect was only obtained using

learners with suYcient knowledge to be able to process all of the required

information in working memory. For complete novices who were unable to

process the high element interactivity material in working memory, a reverse

imagination or ‘‘study’’ eVect was obtained with ‘‘study’’ instructions

proving superior to ‘‘imagination’’ instructions. In other words, the eVect

obtained depended on the levels of expertise of the learners. Higher levels

of expertise could reverse the eVect obtained. The ideal form of

instruction depended on the expertise of the learners. This reversal eVect

with expertise, as it happens, is general. As described in the next section,

most, perhaps all, of the cognitive load eVects described earlier depend on

the use of novices.

10. The Expertise Reversal EVect

With the exception of the imagination eVect, all of the previously described

eVects were intended to provide new instructional procedures for novices

who were on the far left of the cognitive matrix of continua. Learners, of

course, continue to learn and may require instructional procedures after

they have moved beyond the left of the matrix of continua. It turns out that

frequently, once learners have acquired some knowledge, many of the eVects

described previously reverse. With increased experience, conventional

instructional procedures, such as practice at solving problems, are better

than cognitive load procedures, such as studying worked examples. The

imagination eVect diVers from the other eVects discussed in that the

imagination technique is intended for more knowledgeable learners rather

than complete novices and so reverses when the imagination technique is
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presented to novices rather than the more experienced learners. In all other

cases, the eVects shown using novices are reversed when using more

experienced learners. The reversal is due to the redundancy eVect and is

called the expertise reversal eVect. It is due to an interaction between simpler

cognitive load eVects and levels of expertise and can be contrasted with the

element interactivity eVect, discussed earlier, which consists of an

interaction between simpler cognitive load eVects and task complexity.

Using diagrams and text, Kalyuga, Chandler, and Sweller (1998) obtained

the normal split-attention eVect with integrated diagrams and text proving

superior to a split-attention format. A group presented the diagrams alone

performed poorly because the text was essential in helping understand the

diagram, a necessary condition for the split-attention eVect. The learners

used were novices on the left side of the cognitive matrix of continua. Over

several months training in the relevant, engineering area, they moved

toward the right of the matrix of continua. The necessary guidance provided

by the text became less and less essential as schemas were acquired to take

over from the text. The superiority of the integrated format decreased with

increased expertise. A point was reached where there was no diVerence

between groups. Eventually, with additional training, the text became

redundant. Learners could understand and learn from a diagram alone.

Having to process unnecessary text increased the cognitive load. The

presence of redundant text, especially in integrated form where it is diYcult

to ignore, interfered with rather than facilitated learning. A redundancy

eVect was obtained with the diagram-alone condition providing the best

learning environment.

Yeung, Jin, and Sweller (1998) obtained a similar eVect using textual

materials. Learners with low levels of language competence were assisted by

explanatory notes integrated into the primary text. Integrated notes retarded

learning for learners with higher levels of language competence because the

notes were redundant but were diYcult to ignore when integrated into the

primary text.

Other cognitive load eVects also disappear and then reverse with increased

expertise. A modality eVect obtained with novices disappeared and then

reversed (Kalyuga, Chandler, & Sweller, 2000) as expertise increased. Novices

required textual material to assist them understand visually presented

material; that textual material was best presented in spoken rather than

written form, demonstrating the modality eVect. As expertise increased, that

modality eVect disappeared and eventually, presenting the visual material

alone was superior to an audiovisual presentation or, indeed, any presentation

that included the text. Guidance provided by textual material, essential to

students on the left of the cognitive matrix of continua, was provided by the

schemas nowavailable after students hadmoved to the right side of thematrix.
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Similarly, Kalyuga, Chandler, Tuovinen, and Sweller (2001) found that

the worked example eVect reversed with increased expertise. Novices require

worked examples to provide them with guidance. Schemas, once they have

been acquired, provide guidance, and worked examples become redundant.

Kalyuga, Chandler, and Sweller (2001) and Tuovinen and Sweller (1999),

using novices, found that direct instruction is superior to discovery learning.

That diVerence disappeared if learners with more experience in the domain

were used.

These results can be used to explain other findings. McNamara, Kintsch,

Songer, and Kintsch (1996) found that when learners were presented a

textual passage to read and assimilate, those who were relatively expert in

the area learned more from reduced passages that had segments omitted

than the full passage. Learners with less experience in the area learned most

using the full passage. On the present interpretation, novices required the

full passage to allow understanding and so the full passage condition was

superior. With increased experience, the added material was redundant and

merely served to obscure critical points. Working memory resources were

required to extract those critical points from the surrounding, redundant

material, reducing learning and resulting in the superiority of the reduced

passage.

11. The Guidance Fading EVect

From an instructional perspective, the expertise reversal eVect suggests that

as learners move from the left of the cognitive matrix of continua to the

right, schemas increasingly provide guidance and so the guidance provided

by instruction should be faded out. Unnecessary guidance has negative, not

simply neutral eVects. Renkl and associates (Renkl, 1997; Renkl, Atkinson,

& Maier, 2000) obtained precisely this result using combinations of worked

examples, completion problems, and full problems. Using novices, they

found that guidance provided by worked examples was the best form of

instruction. With increasing expertise, it was desirable for those worked

examples to be replaced with completion problems and, ultimately, with full

unguided problems.

It was indicated earlier that for novices, instruction should replace the

missing central executive but that with increased levels of expertise, schemas

play the role of a central executive. A guidance fading technique accords

closely with this suggestion. Initially, with no central executive available,

worked examples indicate relations between elements of information. As

rudimentary schemas begin to form, they can take over some of the central

executive function from worked examples and so complete worked examples

are no longer necessary. Completion problems can be used as a substitute
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for worked examples. Once full schemas have been constructed, they can act

as a central executive and so full problem solving with no other guidance

can be instituted. Additional learning through schema automation should

occur during problem-solving practice.

Renkl, Atkinson, Maier, and Staley (2002) found guidance fading as

levels of expertise increase to be demonstrably superior to using a single

instructional procedure. They compared the presentation of conventional

worked examples with guidance fading. The worked example procedure

incorporated the presentation of several pairs consisting of a worked

example followed by a very similar problem to solve. This pairing of a

worked example followed by a problem was used throughout the learning

period, irrespective of changing levels of expertise. Results indicated that the

guidance fading procedure was superior. The superiority of fading over a

single design procedure (e.g., worked examples alone or problems alone) as

expertise increases constitutes the guidance fading eVect.

The guidance fading eVect, along with the expertise reversal eVect,

indicates that individual diVerences, specifically diVerences in levels of

expertise, are a critical consideration when choosing an instructional design.

A design that is ideal for a person located toward the left of the cognitive

matrix of continua may be quite inappropriate for someone further to the

right of the matrix. Ignoring levels of expertise can result in the use of quite

inappropriate instructional procedures.

The instructional designs described in this section diVer from most

instructional designs in that they are very closely tied to our knowledge of

information structures and human cognitive architecture. Indeed, they were

generated directly from that knowledge. It can be argued that they provide a

degree of validity to the cognitive theories discussed. In any scientific area, it

is diYcult or impossible to generate applications from substantially faulty

theories.
IV. Conclusions

Human cognitive architecture has evolved to permit humans to engage in

activities that range from prosaic to awe inspiring. There are logical

structures that determine the way in which cognitive architecture deals with

information. Those logical structures, along with the structure of infor-

mation itself, must have determined the course of the evolution of human

cognitive architecture. The basic information structures that underlie

human cognitive architecture consist of a very large information store with

limitations to ensure that any changes to that store do not destroy its

functionality. The end result is an architecture designed to store immeasurable
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amounts of information in a long-term memory but a very limited ability to

deal with novel information in working memory. Information held in long-

term memory guides most of our activities. Novel information in working

memory can feed information into long-term memory and so alter long-term

memory, but the logic of the governing information systems ensures that the

alterations are relatively small to circumvent the unavoidable random

components.

As might be expected, this system logic is universal. It not only applies

to the manner in which human cognitive architecture has evolved, it

applies to the manner in which information is handled by the processes

of evolution themselves. Evolution by natural selection can be characterized

as an eVective and eYcient system for managing and adapting very complex,

natural information to changing circumstances. Human cognitive architec-

ture must also manage complex information. Accordingly, it would not be

surprising if human cognitive architecture evolved to handle information in

the same way as evolution by natural selection. Similarities in the way that

the two systems function suggest that human cognitive architecture, by the

processes of evolution by natural selection, has itself evolved to duplicate

the manner in which evolution by natural selection deals with information.

The logic of these systems places both restrictions on and generates

opportunities for the manner in which information is presented and the

activities in which learners should engage. Our cognitive architecture is

structured with schemas providing an executive function guiding our mental

activities. Instruction is required when those schemas are unavailable and

must be acquired. Ideally, that instruction should provide an executive

function that mimics the missing schemas as closely as possible in order to

avoid random activities and reduce working memory load. Many

instructional procedures that meet these requirements have now been

devised. The successful generation of instructional procedures from

theoretical principles provides a degree of validity for those principles.

While the logic of the information systems discussed in this chapter places

immense barriers to their alteration, their adaptability to new circumstances,

even if slow and frequently ineVective, is their crowning glory. Evolution

may occur over eons but its whole point is change and adaptability, resulting

in the creation of new functions, processes, and entities. Similarly, learning

is the adaptive engine of human cognitive architecture. It may take many

years, especially if creativity is required because instruction from and

imitation of other humans is unavailable, but it is the foundation function of

human cognitive architecture. Only through learning does the ability to

eYciently process high element interactivity material become possible, and

processing high element interactivity material is characteristic of humans.

Prior to learning, such material can be dealt with but only in an unguided,
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partially random manner with all complex interactions ignored. Further-

more, there is an inevitability about this limitation. There can be no

mechanism to coordinate the very large number of possible combinations

that can occur when dealing with even a relatively small number of elements

that have not been learned. Because knowledge acquired through learning

provides the only coordinating function, it is essential that our cognitive

architecture evolved to ensure that only a limited amount of uncoordinated

information is considered at any given time prior to learning. This limitation

creates an immediate tension when dealing with high element interactivity

information that cannot be limited or reduced in size without compromising

understanding. Because high element interactivity material must be

coordinated, a mechanism for coordinating such information had to evolve

if it was to be processed. Schematic knowledge acquired through learning is

that mechanism. There are very wide or perhaps no limits to the amount of

previously learned information that humans can process.

On this analysis, long-term memory is the source of human intellectual

skill because long-term memory holds learned material. It may be this

structure that took millions of years to evolve, and at least on earth, is

unique to humans in terms of size. Our huge knowledge base is shared

neither by other living creatures nor, to this point, by artificial devices

created by humans. It may only be shared by the mechanisms that permit

life itself to reproduce and evolve. Other cognitive structures, including ones

not considered in this chapter, such as sensory systems, are both ubiquitous

and frequently superior to their human equivalent. In contrast, our immense

long-term memory, with its close connections to learning, has no cognitive

equivalent on earth. That structure is quintessentially human.
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